780 research outputs found

    Dam-building decision institution in China and integrated managment of watershed

    No full text
    Dam-building is one of important activities of watershed development. More and More peoples realize the negative impacts of dam-building to the ecosystem of watershed since last decades. But, it is not so easy to slow the paces of dam-building, though some negative impacts is obvious and many people stand out to oppose. This paper aims to analysis the problem of integrated management of Lancang-Mekong watershed from the view of dam-building decision institution in china. Firstly, the trends of dam-building in the world are reviewed. It shows that multiple participants in dam-building decision-institution. Secondly, it lists the conflicts of integrated management of lancang-Mekong watershed. Dam-building on the upper reach arouse the attention both of riparian countries and different interest groups, which hold different views on the topic of dam-building. Thirdly, the relationship of the interest groups on the basis of the dam-building decision institution in china is further discussed. It shows that traditional decision-institution is not benefit to the integrated management of watershed, and the attitudes of different interest groups are also lack of sincerity of cooperation. Finally, it puts forward that attitudes and decision institution are main obstacles of integrated management and should be changed step by step

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    apk2vec: Semi-supervised multi-view representation learning for profiling Android applications

    Full text link
    Building behavior profiles of Android applications (apps) with holistic, rich and multi-view information (e.g., incorporating several semantic views of an app such as API sequences, system calls, etc.) would help catering downstream analytics tasks such as app categorization, recommendation and malware analysis significantly better. Towards this goal, we design a semi-supervised Representation Learning (RL) framework named apk2vec to automatically generate a compact representation (aka profile/embedding) for a given app. More specifically, apk2vec has the three following unique characteristics which make it an excellent choice for largescale app profiling: (1) it encompasses information from multiple semantic views such as API sequences, permissions, etc., (2) being a semi-supervised embedding technique, it can make use of labels associated with apps (e.g., malware family or app category labels) to build high quality app profiles, and (3) it combines RL and feature hashing which allows it to efficiently build profiles of apps that stream over time (i.e., online learning). The resulting semi-supervised multi-view hash embeddings of apps could then be used for a wide variety of downstream tasks such as the ones mentioned above. Our extensive evaluations with more than 42,000 apps demonstrate that apk2vec's app profiles could significantly outperform state-of-the-art techniques in four app analytics tasks namely, malware detection, familial clustering, app clone detection and app recommendation.Comment: International Conference on Data Mining, 201

    Application of Learning Strategies to Culture-Based Language Instruction

    Get PDF
    Learning strategy is one of the most important factors that determine the learning result. So, teaching learners to grasp certain kinds of strategies is a key factor which can promote the learning efficiency. This thesis discusses the learning strategies in the theoretical and pedagogical aspects, illustrates the significance of culture-based language instruction in second language teaching, and elaborates three ways to help students use appropriate strategies in their culture-based language learning

    Modelling continuous sequential behaviour to enhance training and generalization in neural networks

    Get PDF
    This thesis is a conceptual and empirical approach to embody modelling of continuous sequential behaviour in neural learning. The aim is to enhance the feasibility of training and capacity for generalisation. By examining the sequential aspects of the passing of time in a neural network, it is suggested that an alteration to the usual goal weight condition may be made to model these aspects. The notion of a goal weight path is introduced, with a path-based backpropagation (PBP) framework being proposed. Two models using PBP have been investigated in the thesis. One is called Feedforward Continuous BackPropagation (FCBP) which is a generalization of conventional BackPropagation; the other is called Recurrent Continuous BackPropagation (RCBP) which provides a neural dynamic system for I/O associations. Both models make use of the continuity underlying analogue-binary associations and analogue-analogue associations within a fixed neural network topology. A graphical simulator cbptool for Sun workstations has been designed and implemented for supporting the research. The capabilities of FCBP and RCBP have been explored through experiments. The results for FCBP and RCBP confirm the modelling theory. The fundamental alteration made on conventional backpropagation brings substantial improvement in training and generalization to enhance the power of backpropagation
    • …
    corecore